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Introduction

Scaling and biasing the range and offset of analog signals is a useful skill for working
with a variety of electronics. Not only can it interface equipment with different input
and output voltage ranges together, it is also useful for designing circuits such as
discrete transistor amplifiers. If you have a signal in one part of your circuit with a
particular voltage range and offset, and need to map it to another range and offset,
scaling and biasing will help. Several methods are presented here, including passive
resistor designs and basic op amp techniques.

To begin, suppose you have an analog input signal Vin(t), where Vin is a time dependent
voltage. Scaling and biasing simply means computing a new signal Vout(t):

Vout(t) = s · Vin(t) + b (1)

where the parameter s is called the scale and the parameter b the bias. The goal is to
construct an analog electronic circuit that produces this linear transformation of Vin

to Vout. Effectively, the circuit will be an analog computer for equation (1).

In elementary algebra, the parameters s and b are called the slope and offset of a
straight line. The words scale and bias as used in electronics are synonyms for slope
and offset. Setting aside for the moment that Vin and Vout depend on t, and focusing
instead on Vout as a function of Vin, equation (1) is the graph of a straight line. In
fact, given two (Vin, Vout) pairs on the straight line, we can compute s and b with:

s = ∆Vout/∆Vin (2)
b = Vout − s · Vin (3)

where either one of the (Vin, Vout) pairs can be used to compute b. The parameter s is
dimensionless having the units (volts/volts), while b has the dimensions of volts.
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With these equations in hand, specifying the input and output ranges is equivalent
to specifying s and b. For example, suppose you have a signal ranging from -100 to
+100 volts, and you would like to map it into a (0,5) volt range. This is a common
data acquisition problem where a sensor may not match an A/D input range. In this
example, since we have ∆Vin = 200 and ∆Vout = 5, equation (2) gives:

s = ∆Vout/∆Vin = 5/200 = 0.025

and with Vout = 0 when Vin = −100, equation (3) gives:

b = Vout − s · Vin = 0− s · (−100) = 0.025 · 100 = 2.5

so the final transformation between Vout and Vin for this case would be:

Vout = 0.025 · Vin + 2.5

By testing various values in this equation you can verify it linearly maps voltages in
the range of (-100,100) into (0,5) volts. Note that not only is the scale of the input
voltage reduced by this particular transformation, negative inputs are mapped into a
positive range as well.

Those familiar with oscilloscopes already know scaling and biasing. Scopes typically
have one knob s to set the amplitude of the trace, and another knob b to translate
it vertically up and down the display. Internally the scope has scaling and biasing
circuits that can be set with the knobs.

This paper is about designing scaling and biasing circuits. Given s and b we would
like to find a combination of resistors and other components to produce the trans-
formation in equation (1). While not particularly difficult, the equations to compute
component values are not trivial either. We will even find mathematical techniques
such as projective transformations play an interesting role.

2



Two resistor circuits

Two resistor dividers are a convenient starting point for scaling and biasing. This
section reviews the basic scaling divider, and then shows how to add a bias. We will
find even though two resistor circuits have limitations regarding their bias, they are
still useful for many applications. The next section, Three resistor circuits, will show
how to implement designs which are even more flexible.

Consider the following two resistor scaling divider, where Vin is the input, Vout is the
output, and (Ra, Rb) are the resistor values. Note that the labels Vin and Vout can
be confusing because Vin is probably the output from some device on the left, and at
the same time is the input to the divider. Don’t confuse the meaning of the words in
and out when working with the equations below. This paper assigns labels from the
divider’s point of view.

Figure 1: Basic two resistor scaling divider

Using Kirchoff’s and Ohm’s laws, and assuming no loading on Vout, the output voltage
of this circuit is:

Vout = [ Rb/(Ra + Rb) ] · Vin (4)

The usual steps to derive this are: by Ohm’s law, the current through the series
combination (Ra, Rb) is: Vin/(Ra + Rb) . Then, since this is the same current flowing
through Rb, the final output voltage is: Rb · [Vin/(Ra + Rb)] . Deriving this equation
should become automatic if you are working with these types of circuits. Equation (4)
can also be derived formally by applying Kirchoff’s and Ohm’s laws to each node and
leg of the circuit and solving the resulting simultaneous equations.

3



Note that equation (4) can be written as:

Vout = [ (B/A) / (1 + (B/A)) ] · Vin (5)

where two changes have been made. First, the resistor values have been denoted by
capital letters, A = Ra and B = Rb to reduce the number of subscripts. We will follow
that pattern in the rest of this this paper. Second, the top and bottom of equation
(4) have been multiplied by 1/A to show it is only the ratio B/A that determines
the output voltage. Sometimes, if B is much less than A, it may even be possible to
approximate the output as (B/A)Vin, however here we will keep the equation exact so
it is applicable to precision work.

The simple divider in Figure 1 is suitable for applications where only scaling is required.
Note equation (4) or (5) is the same as equation (1) with s = B/(A + B) and b = 0.
That is to say it is a transformation with no bias or offset. As a specific example,
suppose you have a sensor with an output range of 0 to 50 volts and wish to map that
into a 0 to 5 volt range. Choosing A = 90K ohms and B = 10K would scale the input
by 10/(10 + 90) = 0.10 , and the (0,50) volt sensor would be divided down to (0,5)
volts. The circuit is:

Figure 2: Scaling (0,50) into (0,5) with no bias

If you build this circuit, be careful the high input voltage is never accidentally connected
directly to Vout, because you might damage any downstream equipment. A 6 volt zener
across the output would be a reasonable first step towards protection.

Even though it is only the ratio B/A that determines the output in equation (4), also
keep in mind that there are currents flowing in the resistors. With a 90K and 10K
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pair, a maximum current of 50v/100K = 1/2 milliamp will flow in the divider. This is
good, the resistors will not overheat, and hopefully the input source can provide that
amount of current. Do not use a 9 ohm and 1 ohm resistor in Figure 2.

While the simple scaling divider is fine for applications requiring only scaling, it does
not add any bias. Negative voltages going into the divider come out negative, while
you may require such voltages to be biased into the positive range. This can be done
by modifying the basic divider as shown in Figure 3. The circuit is the same as the
simple scaling divider except the end of resistor B is held at a nonzero voltage and not
at ground.

Figure 3: Biased two resistor divider

The output of the biased divider in Figure 3 is:

Vout = [B/(A + B)] · Vin + [A/(A + B)] · Vbias (6)

With practice, equations like (6) can be written down at sight. Here is how: from
Kirchoff’s and Ohm’s laws we know Vout must be a linear homogeneous function of
Vin and Vbias. Because of that we can solve for Vout with Vin and Vbias alternately set
to zero and then add the partial results together to form the complete answer. The
partial results for Vin and Vbias are easy to write down because they are each the same
as the simple scaling resistor divider without bias. This decomposition is indicated
with the subdiagrams in Figure 3.

Comparing the biased divider equation (6) with equation (1), we can see it is a full
linear transformation with scaling and biasing given by:
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s = [ B/(A + B) ] (7)
b = [ A/(A + B) ] · Vbias (8)

where b is now a nonzero value. Progress! We have a linear transformation including
bias. Note the value of b is not the same as the Vbias bias voltage. The resistors A
and B scale not only the input signal, but also the bias voltage. Because of this, the
equations between (s, b) and (A,B, Vbias) are coupled. Despite this, a simple circuit
for equation (1) results and is very useful.

As a forward example with equation (6), suppose we try B = A and Vbias = 5.0, then:

Vout = Vin/2 + 2.5 (9)

and an input range of (-5,+5) volts is mapped into (0,5). We have successfully mapped
an input range including negative voltages into a purely positive range, and only re-
quired a single positive bias voltage to do it! The corresponding circuit is:

Figure 4: Scaling and biasing (-5,+5) into (0,5) with Vbias = +5.0

You can breadboard this in any convenient fashion and measure the input and output
with a scope. A sine wave generator makes a good input signal for testing, and an
adjustable lab power supply can provide the bias voltage. This simple circuit can be
quite useful for interfacing various types of equipment together.

Of course, in actual practice the design goal is to go the other way with equation (6).
Given the ranges for Vin and Vout, the problem is to determine the required values of
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(A,B, Vbias). To do that, follow a two step design process. First start with the Vin

and Vout ranges, and use equations (2) and (3) to determine s and b. Then use the
value of s with equation (7) to determine the ratio r = B/A, followed by equation (8)
to determine the required Vbias.

Combining the algebra into one set of equations arrives at:

r = ∆Vout / (∆Vin −∆Vout) (10)
Vbias = Vout − r · (Vin − Vout) (11)

where r = B/A, and (Vin, Vout) is any pair of input/output values. As usual, while
any resistors with the ratio r will work, use values large enough to keep the divider
currents small. Also note the value of Vbias is fixed by the design process. With these
equations in hand, the design steps for a biased two resistor divider in Figure 3 are:

Step 1: Determine the required input and output ranges from spec sheets or
experiment:

∆Vin = divider input span ( = sensor output range )

∆Vout = divider output span ( = A/D input range )

Step 2: Compute the resulting resistor ratio:

r = B/A = ∆Vout/(∆Vin −∆Vout)

Step 3: and, compute the required bias voltage:

Vbias = Vout − r · (Vin − Vout)

where the Vin and Vout in step 3 are any convenient pair of input and output voltages.
Note that when working by hand, these computations are often best done as fractions
which are easy to write down with no loss of precision.

Let’s see if these design steps work with the above example that started with B = A
and Vbias = 5.0, but going in the reverse direction instead. Beginning with the input
and output ranges, (-5,+5) and (0,5), we first compute ∆Vin = 10 and ∆Vout = 5.
Then applying step 2 gives:

r = 5 / (10−5) = 1
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or B = A, and computing step 3 with Vin = −5.0 mapping into Vout = 0.0 gives:

Vbias = 0− 1(−5− 0) = 5.0 volts

all agreeing with the results we should get.

The table in Figure 5 computes the values of (A,B, Vbias) required to map a variety
of bipolar input ranges into a (0,5) output, a popular range for A/D equipment. Note
the (A,B) values have been scaled so A is always a 10K ohm resistor. You can scale to
other values as appropriate, just keep the divider currents in the low milliamp range.
Regardless of what scaled resistor values are used, Vbias must be as shown. The line
marked with a ? is the same as the circuit in Figure 4.

Bipolar input ∆Vin Vout A(Kohm) B(Kohm) Vbias

(+/-) 03.0 6.0 (0,5) 10.000 50.000 15.00
(+/-) 04.0 8.0 (0,5) 10.000 16.667 6.67

? (+/-) 05.0 10.0 (0,5) 10.000 10.000 5.00
(+/-) 06.0 12.0 (0,5) 10.000 7.143 4.29
(+/-) 07.0 14.0 (0,5) 10.000 5.556 3.89
(+/-) 08.0 16.0 (0,5) 10.000 4.545 3.64
(+/-) 09.0 18.0 (0,5) 10.000 3.846 3.46
(+/-) 10.0 20.0 (0,5) 10.000 3.333 3.33
(+/-) 11.0 22.0 (0,5) 10.000 2.941 3.24
(+/-) 12.0 24.0 (0,5) 10.000 2.632 3.16
(+/-) 13.0 26.0 (0,5) 10.000 2.381 3.10
(+/-) 14.0 28.0 (0,5) 10.000 2.174 3.04
(+/-) 15.0 30.0 (0,5) 10.000 2.000 3.00

Figure 5: (A,B, Vbias) values for mapping various input ranges into (0,5)

Note that the (A,B, Vbias) values in the table above are for input ranges balanced
evenly around 0. In fact, the design steps work equally well for unbalanced inputs.
Balanced input is only the most common case.

As an example of unbalanced input, consider mapping the input range of (-5,+10) into
the range (0,5). Using the design steps, the calculation in Figure 6 results. To build
a circuit for this example, choose any two resistors with the ratio 1/2. The values
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B = 10K and A = 20K would be appropriate. If you don’t have a 20K resistor on
hand, build one from two 10K resistors in series. Use a lab power supply or op amp
to generate the required 2.5 volt bias voltage and you are done.

Unbalanced input design example:

Sensor range = (-5,+10)
A/D range = (0,5)

-> Divider input span = 15 volts
-> Divider output span = 5 volts

r = 5/(15-5) = 1/2 ( = B/A resistor ratio )
Vbias = 0 - 1/2 * (-5 - 0) = 2.5 volts

Figure 6: Scaling and biasing an unbalanced (-5,+10) into (0,5) with Vbias = +2.5

When working with biased resistor dividers, Vbias must be constant. This is crucial.
Any change in Vbias will become a variation or noise on Vout. You must have access
to a bias voltage that is low impedance, well regulated, and noise free. Often such a
voltage is available from an A/D reference voltage on the data acquisition equipment,
or perhaps from a power supply.

Also note for two resistor circuits, the required bias voltages are a result of the design
steps, and odd values of Vbias may be required. If you need to map (-6,+6) into (0,5)
and don’t have access to a bias voltage like 4.29 volts, the next section reviews three
resistor circuits allowing the bias to be specified as part of the design. Do not use a
resitive divider to generate odd bias voltages. The output from such a divider will not
stay constant as Vin varies. It is easier to use the circuits discussed in the next section
or op amp techniques.

Generally, scaling and biasing with resistor dividers achieves good results. Besides
being simple, if metal film resistors with a low TC and a well regulated low impedance
bias voltage are used, such circuits add little noise to a signal. Sometimes, the input
impedance of a resistive divider may be a concern. However, for applications with
active sensors, this is usually not a problem because such sensors typically have output
amplifiers capable of driving resistor dividers. When input impedance is an issue
consider the techniques in the op amp section.
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Three resistor circuits

For the two resistor designs in the previous section, the required bias voltage is fixed
by the input and output ranges, and may not be a convenient value. With the addition
of one resistor, the bias voltage may be specified as part of the design process. Figure
7 shows the three resistor circuit, where the additional resistor C is connected from
the Vout node to ground.

Figure 7: Biased three resistor divider

Using linearity and superposition of partial results, the output voltage for this circuit
can be written down at sight as:

Vout = [ (B|C) / (A + (B|C)) ] · Vin + [ (A|C) / (B + (A|C)) ] · Vbias (12)

where | denotes the parallel combination of two resistors: (B|C) = (B · C)/(B + C).
In equation (12) the additional degree of freedom C beyond the two resistor equation
(6) allows for the value of Vbias to be specified rather than fixed by the design process.
Comparing equation (12) with equation (1) we can see it is a full linear transformation
with:

s = [ (B|C) / (A + (B|C)) ] (13)
b = [ (A|C) / (B + (A|C)) ] · Vbias (14)
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where our design goal is: given (s, b, Vbias) to compute (A,B, C). Clearly the rela-
tionship between (s, b) and the resistors is more complicated than the two resistor
equations (7) and (8), and one might even wonder if it is nonlinear. Actually, things
are simpler than they appear at first. To see this, start over with Kirchoff’s and Ohm’s
law at the Vout node in Figure 7:

(Vout − Vin)/A + (Vout − Vbias)/B + Vout/C = 0 (15)

Assuming no external loading at Vout, this equation specifies the sum of the currents
is conserved. The current flowing into the node is matched by that flowing out. Of
course with algebra equation (15) can be derived from equation (12), but starting from
first principles is more direct. Sometimes this circuit is redrawn and referred to as a
Y connection for three resistors as in Figure 8.

Figure 8: Y connection

Rearranging (15) into transfer equation form results in:

Vout · (1/A + 1/B + 1/C) = Vin/A + Vbias/B (16)

or

Vout = Vin/(A · (1/A + 1/B + 1/C)) + Vbias/(B · (1/A + 1/B + 1/C)) (17)

Equation (15) is linear in the conductances (1/A, 1/B, 1/C). We won’t make much
use of that fact here. However, these equations are also homogeneous in (A,B, C).
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That is to say, multiplying (A,B, C) all by the same constant λ results in another set
of resistors that solve the equations equally well. This mapping of one solution into
another will be useful.

Comparing equation (17) with equation (1), we see the values for (s, b) are:

s = ( 1 / [ A · (1/A + 1/B + 1/C) ] ) (18)
b = ( 1 / [ B · (1/A + 1/B + 1/C) ] ) · Vbias (19)

These are of course the same as equations (13) and (14), just in different algebraic
form. Given (s, b, Vbias), we’d like to solve these two equations for the three unknowns
(A,B, C). At first it might seem as if there are fewer equations than unknowns in (18)
and (19), and the system is under determined. But, multiplying the top and bottom
of each equation by C, the pair can be rewritten as:

s = ( (C/A) / (C/A + C/B + 1) )
b = ( (C/B) / (C/A + C/B + 1) ) · Vbias

to show there are really only two equations in the two unknown ratios (C/A) and
(C/B), which could then be solved. Rather than solving these equations directly, here
is an even easier way to proceed:

From equation (15) we know any multiple λ(A,B, C) ≡ (A
λ
, B

λ
, C

λ
) of a given solution

is also solution. For a particularly convenient scaling, choose:

λ = (1/A + 1/B + 1/C)

and then the pair (18) and (19) becomes:

s = 1/A
λ

(20)
b = Vbias/B

λ
(21)

This decoupled pair for (A
λ
, B

λ
) is easy to solve and combine with equations (2) and

(3) for s and b in terms of the input and output voltage ranges giving:

A
λ

= ∆Vin/∆Vout (22)
B

λ
= Vbias/(Vout − Vin/A

λ
) (23)

C
λ

= 1/(1− 1/A
λ
− 1/B

λ
) (24)
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The last equation for C
λ

reflects the scaling λ we have chosen. To see this start with:

1/A
λ

+ 1/B
λ

+ 1/C
λ

= (1/λ) · (1/A + 1/B + 1/C) = 1

and solve the left for C
λ

in terms of (A
λ
, B

λ
), yielding equation (24). To summarize, the

linear homogeneous symmetry of equation (15) has been used to find one particularly
easy solution, and now other solutions can be obtained by simply scaling (A

λ
, B

λ
, C

λ
)

as needed. This type of symmetry is known as a projective transformation. Such
transformations have a long and fascinating history, often achieving surprising results
as in the photo at the end of this paper.

With these equations in hand, the general design steps for the biased three resistor
circuit in Figure 7 are:

Step 1: Determine the input and output ranges from spec sheets or experiment:

∆Vin = divider input span ( = sensor output range )

∆Vout = divider output span ( = A/D input range)

Step 2: Compute (A
λ
, B

λ
, C

λ
) from:

A
λ

= ∆Vin/∆Vout

B
λ

= Vbias/(Vout − Vin/A
λ
)

C
λ

= A
λ
B

λ
/(A

λ
B

λ
−A

λ
−B

λ
)

where Vout and Vin in the B
λ

equation are any convenient input and output pair.
When computing by hand, it may be easiest to carry the calculation as fractions.

Step 3: Scale (A
λ
, B

λ
, C

λ
) to the desired values. For example, if A = 10K ohm is

desired then compute:

A = (10K/A
λ
) ∗A

λ
= 10K

B = (10K/A
λ
) ∗B

λ

C = (10K/A
λ
) ∗ C

λ

The table in Figure 9 gives the three resistor values (A,B, C) to map a variety of
bipolar input ranges into the output range Vout = (0,5) using Vbias = 5.0 volts. These
values should be used with the circuit in Figure 7. The resistor values have been scaled
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so A is 10K ohms. Multiply (A,B, C) all by the same constant to scale to other values,
where for safe divider currents, keep the resistors in the Kohm range. Of course the
thing to note about this table is all the mappings use the same bias voltage, 5.0 volts
in the last column. This should be compared with the two resistor table.

Bipolar input ∆Vin Vout A(Kohm) B(Kohm) C(Kohm) Vbias

(+/-) 05.0 10.0 (0,5) 10.000 10.000 ****** 5.00

(+/-) 06.0 12.0 (0,5) 10.000 8.333 50.000 5.00

(+/-) 07.0 14.0 (0,5) 10.000 7.143 25.000 5.00

(+/-) 08.0 16.0 (0,5) 10.000 6.250 16.667 5.00

(+/-) 09.0 18.0 (0,5) 10.000 5.556 12.500 5.00

? (+/-) 10.0 20.0 (0,5) 10.000 5.000 10.000 5.00

(+/-) 11.0 22.0 (0,5) 10.000 4.545 8.333 5.00

(+/-) 12.0 24.0 (0,5) 10.000 4.167 7.143 5.00

(+/-) 13.0 26.0 (0,5) 10.000 3.846 6.250 5.00

(+/-) 14.0 28.0 (0,5) 10.000 3.571 5.556 5.00

(+/-) 15.0 30.0 (0,5) 10.000 3.333 5.000 5.00

(+/-) 16.0 32.0 (0,5) 10.000 3.125 4.545 5.00

(+/-) 17.0 34.0 (0,5) 10.000 2.941 4.167 5.00

(+/-) 18.0 36.0 (0,5) 10.000 2.778 3.846 5.00

(+/-) 19.0 38.0 (0,5) 10.000 2.632 3.571 5.00

(+/-) 20.0 40.0 (0,5) 10.000 2.500 3.333 5.00

Figure 9: Three resistor values for mapping various input ranges into (0,5)

The case of a (-10,+10) input range marked with a ? in the table is of particular
interest for many applications. The circuit for this is shown in the following figure.
A/D references can provide the bias voltage, as well as power supplies in some cases.
If you don’t have a 5K resistor on hand, build it from two 10K resistors in parallel.

Figure 10: Three resistor scaling and biasing (-10,+10) into (0,5) with Vbias = +5.0

14



By comparison, a two resistor divider requiring a less convenient 3.3 volt bias is shown
in the following figure. However, we will see in the next section even this is reasonably
easy to use when combined with an op amp.

Figure 11: Two resistor scaling and biasing (-10,+10) into (0,5) with Vbias = +3.3

It is worth noting the projective transformations used in this section can be applied to
more complicated networks with additional resistors, as well as the analysis of circuits
involving complex impedances with sinusoidal AC voltages. Sometimes difficult phase
relationships can be reduced to decoupled equations when scaled properly. The scaling
factor λ may itself become complex, but the algebraic structure remains the same as
with purely resistive elements.

15



Op Amp techniques

Adding op amps to scaling and biasing circuits provides possibilities beyond the passive
resistor dividers already covered. For example, op amps can be used to increase the
input impedance of a resistor divider, lower the output impedance of a resistor divider,
add gain to signals, and perform other circuit functions. This section will review a few
circuit examples, but does not give full design steps as in the previous sections.

A good feature of op amps is their naturally high input impedance. Passive resistor
dividers have the input impedance of their resistors. For applications where a very
high input impedance is required, an op amp can buffer a resistive divider input into
the high Mohm range. However, keep in mind high input impedance can increase noise
pickup on long input cables and consider working with lower input impedances if you
anticipate noise problems. Besides buffering the input impedance, op amps can also
drive significant loads and be used to lower the output impedance of passive resistor
networks.

A bad feature of op amps is they require a power supply. Not only that, if the op amp
must handle bipolar input signals, then a split +/- supply will be probably be required.
Often something like +/-12 volts. Providing a split supply increases the complexity
of implementing op amp circuits. For this discussion, we assume users are familiar
with these issues and have their own preferred solutions. Power supply and ground
connections are not shown in the circuit fragments reviewed here but are essential for
proper operation.

Circuits involving op amps can be as simple as unity gain buffers:

Figure 12: Op amp unity gain buffer with scaling
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This circuit buffers a (-10,+10) signal with a unity gain amplifier on the left to provide
high input impedance. The output of the input buffer is then scaled and biased with
a two resistor divider. For +/-10 input to be scaled to (0,5) output, the two resistor
divider requires a 3.3 volt bias, as listed in the two resistor table in Figure 5. Here,
the bias is formed from a 5 volt reference and a resistor divider which is then buffered
with its own unity gain amplifier so the 3.3 volts has low output impedance and will
not vary. Finally, the signal output is also buffered for a low output impedance. When
implementing this circuit, you will have to provide power for the op amps. For the
resistors, you can build a 3.3K resistor from three 10K resistors in parallel. Although
simple, this circuit is capable of good performance.

The circuit in Figure 13 makes further modifications to give the front end a gain of
10. With this configuration, the full scale input range becomes (+/-500mV). Here,
for scaling and biasing after the gain stage, a two resistor divider is used with 5 volts
as the bias source.

Figure 13: Op amp buffer with gain of 10

Generic bipolar op amps are often good choices for the amplifiers in these circuits.
Parts such as the LM324 provide four amps at an exceptionally low price with good
noise and other specs. Don’t worry too much about op amp Vio input offset when
using reasonable gains. In the above circuit, a LM324 with a typical 7mV Vio would
result in 70mV of Vout offset. While you could use a higher grade amplifier, if the
application is an interface to an A/D system the LM324 offset can often be removed
as a calibration correction in software. Of course, temperature sensitive applications
may require higher grade amps with less Vio TC.

One area of caution when using op amps, particularly as unity gain buffers, is in driving
capacitive loads. Capacitive loading directly on the output of an op amp may cause the
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amp to oscillate. For example, the capacitance of long cables can be enough to create
trouble. Check your signals with an oscilloscope to make sure all is well. For those
cases where driving a capacitive load is unavoidable, the circuit shown in Figure 14 is
reasonable. If you are driving loads of varying capacitance, such as cables of varying
lengths, you may wish to put a large cap on the output to swamp out the variations
and make component values insensitive to the various loads. Do not assume you will
be lucky : op amps with capacitive loads will oscillate. Typical values for DC and low
frequency applications are shown in the circuit fragment. The design equations for
Figure 14 go beyond the scope of this paper.

Figure 14: Op amp output circuit for capacitive loads

Besides using op amps to buffer passive resistor dividers as in the circuits above, it
is also possible to bias signals by adjusting the operating point of the op amp itself.
With this approach, the number of op amps required can sometimes be reduced. A
popular circuit along these lines is the biased inverting amp:

Figure 15: Biased inverting op amp circuit
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The transfer function for this circuit is:

Vout = − (B/A) · Vin + (1 + B/A) · Vbias (25)

This equation is derived using the fact that the negative feedback drives the - input
to match the + input, and the op amp input currents are negligible. As an example,
if A = 2B and Vbias = 5/3, then the transfer equation for Figure 15 is:

Vout = − Vin/2 + 2.5 (26)

and an input range of (-5,+5) is mapped into an output range of (5,0). This result
should be compared with equation (9) for a two resistor passive design, as well as
comparing equations (25) and (6). The op amp circuit adds an inversion, but otherwise
the design steps for various input and output ranges are comparable. As with a two
resistor divider, odd bias voltages like 5/3 may be required. However, here you can
generate the bias with a simple unbuffered resistor divider because the high input
impedance of the op amp + input will not load the divider. Taking this approach
Figure 15 becomes:

Figure 16: General difference op amp circuit

The transfer function for this is simply an extension to equation (25):

Vout = − (B/A) · V1 + (1 + B/A) · (D/(C + D)) · V2 (27)

where the inputs have been labeled V1 and V2 for generality. By selectively choosing
(V1, V2) and (A,B, C, D) with this circuit, a surprising number of circuit variations are
possible. A few special cases are given on the next page.
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Special cases of equation (27) are:

Description : standard Inverting amplifier with bias, (Figure 15)
(V1, V2) (A,B, C, D) : V1 = Vinput , V2 = Vbias , C = 0 , D = ∞

Transfer function : Vout = −(B/A) · Vinput + (1 + B/A) · Vbias

Description : standard Non Inverting amplifier with bias and gain >= 1
(V1, V2) (A,B, C, D) : V1 = Vbias , V2 = Vinput , C = 0 , D = ∞

Transfer function : Vout = (1 + B/A) · Vinput + −(B/A) · Vbias

Description : Non Inverting amplifier with gain = 1/2
(V1, V2) (A,B, C, D) : V1 = V2 = Vinput , A = B , D = 3C

Transfer function : Vout = (1/2) · Vinput

Description : standard Difference amplifier with unity gain
(V1, V2) (A,B, C, D) : A = B = C = D

Transfer function : Vout = V2 − V1

Despite the many special cases possible with Figure 16 and equation (27), the standard
inverting amplifier with bias has several advantages. In particular, the following is often
a good match for mapping (-5,+5) into (5,0) with Vbias = +5 volts:

Figure 17: (-5,+5) to (5,0) inverting op amp circuit with bias

This circuit is particularly attractive because the inverting stage inputs are maintained
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at a constant voltage by the negative feedback and do not see much common mode
stress. Furthermore, with the inverting stage inputs at a constant voltage, the bias
source does not see any load variation with input signal. This makes it much easier to
maintain a precision constant bias. Finally, this configuration requires only a positive
bias voltage.

By contrast, for a non-inverting circuit, the inputs would see full range common mode
stress, a varying load would be placed on the bias source, and a negative bias would be
required. Of course, a downside to the inverting amplifier is it does not have high input
impedance. So a unity gain buffer has been added in Figure 17. This a reasonable
tradeoff with many generic op amps optimized for unity gain performance. When
constructing this circuit in the lab it is reasonable to make A = C = 10K and build
the (A/2, C/2) resistors with pairs of 10K resistors in parallel. Depending on the op
amp selection, it may even be possible to run the inverting stage from a single positive
power supply.

Beyond op amps, instrument amps can also be used to perform scaling and biasing.
This is usually done by applying the desired bias to the instrument amp reference pin.
An instrument amp is typically several op amps on a single integrated circuit with a
difference amp at its core. Instrument amps have good and bad points. A good point
is they have matched resistor pairs as part of the integrated circuit substrate. This
can be help improve common mode rejection for some differential applications. On the
bad side, they are not as available as op amps, they do not have as wide a range of
performance specs, they are more expensive, and they do not have standardized pin
outs. The standardized pin outs of dual and quad op amps makes it easy to try a
variety of parts with different specs in the same circuit. For instrument amp designs,
manufacturer spec sheets should be consulted.
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Summary

Several simple scaling and biasing techniques have been reviewed, along with the design
equations for computing exact results. While other designs are certainly possible, the
circuits presented here have proven simple and reliable for many applications. Among
the most popular are:

/ mapping (-5,+5) into (0,5) with a two resistor network

/ mapping (-10,+10) into (0,5) with a three resistor network

/ mapping (-5,+5) into (5,0) with a biased inverting op amp circuit

These circuits are capable of precision low noise performance with inexpensive com-
ponents. If your input or output ranges differ from the specific examples given here,
use the design steps or tables presented in the sections above to compute custom
component values.
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